Hot worms can handle heavy metal. Focus on "HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans".
نویسندگان
چکیده
Chronic exposure to environmental heat improves tolerance via heat acclimation (AC). Our previous data on mammals indicate that reprogramming the expression of genes coding for stress proteins and energy-metabolism enzymes plays a major role. Knowledge of pathways leading to AC is limited. For their identification, we established a Caenorhabditis elegans AC model and tested mutants in which signaling pathways pertinent to acclimatory responses are mutated. AC attained by maintaining adult C. elegans at 25 degrees C for 18 h enhanced heat endurance of wild-type worms subjected to heat stress (35 degrees C) and conferred protection against hypoxia and cadmium. Survival curves demonstrated that both daf-2 (insulin receptor pathway) showing enhanced heat tolerance and daf-16 loss-of-function (a transcription factor mediating DAF-2 signaling) mutants benefit from AC, suggesting that the insulin receptor pathway does not mediate AC. In contrast, the hif-1 (hypoxia inducible factor) loss-of-function strain did not show acclimation, and non-acclimated vhl-1 and egl-9 mutants (overexpressing HIF-1) had greater heat endurance than the wild type. Like mammals, HIF-1 and HSP72 levels increased in the wild-type AC nematodes. HSP72 upregulation in AC hif-1 mutants was also observed; however, it was insufficient to improve heat/stress tolerance, suggesting that HIF-1 upregulation is essential for acclimation, whereas HSP72 upregulation in the absence of HIF-1 is inadequate. We conclude that HIF-1 upregulation is both an evolutionarily conserved and a necessary component of heat acclimation. The known targets of HIF-1 imply that metabolic adaptations are essential for AC-dependent tolerance to heat and heavy metals, in addition to their known role in hypoxic adaptation.
منابع مشابه
Focus on “HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans”
LIFE DEVELOPED in a stressful environment. Stressors at the cellular level include heat, hypoxia, oxidative or reductive substances, mechanical or osmotic pressure, and toxic compounds like heavy metals. Various molecular pathways, more or less specific for the different stressors, developed during evolution to combat the molecular consequences of cell stress. Thermal stress induces the inducti...
متن کاملA new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
Increasing emissions of heavy metals such as cadmium, mercury, and arsenic into the environment pose an acute problem for all organisms. Considerations of the biochemical basis of heavy metal detoxification in animals have focused exclusively on two classes of peptides, the thiol tripeptide, glutathione (GSH, gamma-Glu-Cys-Gly), and a diverse family of cysteine-rich low molecular weight protein...
متن کاملA neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.
In the nematode Caenorhabditis elegans, the heat shock response (HSR) is regulated at the organismal level by a network of thermosensory neurons that senses elevated temperatures and activates the HSR in remote tissues. Which neuronal receptors are required for this signaling mechanism and in which neurons they function are largely unanswered questions. Here we used worms that were engineered t...
متن کاملFormation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans
All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types ...
متن کاملHypoxia-inducible Factor-1 (HIF-1)-independent hypoxia response of the small heat shock protein hsp-16.1 gene regulated by chromatin-remodeling factors in the nematode Caenorhabditis elegans.
Oxygen deprivation is accompanied by the coordinated expression of numerous hypoxia-responsive genes, many of which are controlled by hypoxia-inducible factor-1 (HIF-1). However, the cellular response to hypoxia is not likely to be mediated by HIF-1 alone, and little is known about HIF-1-independent hypoxia responses. To better establish the molecular mechanisms of HIF-1-independent hypoxia res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2003